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PARAMETRIC AND SELF-EXCITED VIBRATIONS INDUCED BY
FRICTION IN A SYSTEM WITH THREE DEGREES OF FREEDOM

J. Awrejcewicz*

(Received November 6, 1989)

The paper presents the analysis of a nonlinear parametric system consisting of a rotor with rectangular cross-section placed in
a rigid self-excited base. The parametric unstability zones have been identified on the basis of the method of expanding into a
power series in relation to two perturbation parameters(one connected with parametric excitation, the other with friction
coefficient). The influence of the changes of chosen parameters of the system on the size and shape of the unstability zones of the

first order has been investigated.
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1. INTRODUCTION

Friction induced self-excited vibrations and parametric
vibrations occur in many physical systems and have heen in
the focus of interest for a long time in many works concern-
ing vibrations(Stoker, 1950 ; Minorsky, 1962 ; Hayashi, 1964 ;
Cunningham, 1958). Both kinds of vibrations may be consid-
ered as sufficiently known. Howerver, when both excitations
occur simultaneously in one system, the phenomenon is more
complex (see for example, Alifov, Frolov;1985), On the
other hand, this case occurs in technology, because e.g. in the
combustion engine, in certain conditions self-excited vibra-
tions of the piston and parametric vibrations of the crank-
shaft can occur. Both self-and parametrically excited vibra-
tions together with forced vibrations are analysed in this
paper. The parametric excitation and the exciting force come
from the rotor with rectangular cross-section, which has in its
middle a cylinder-like mass concentrated eccentrically on it.
The rotor is fixed on a base placed on a belt moving at
constant velocity. At a certain value of the belt velocity and
the frequency of rotor turns, parametric and self-excited
vibrations are created in addition to the forced vibrations.

As the parametric excitation g and the friction coefficient
e are small in such a system they have been recognized as
perturbation parameters. The methods with one perturbation
parameter used to determine the limits of the stability-loss
zones are widely described in the literature, and their exten-
sive presentation is given by Malkin, 1956 ; Giacaglia, 1972 ;
lakubovic, Starzinsky, 1972. However, the analytical
approach based on introducing of two independent perturba-
tion parameters is rarely used in mechanics. This paper
presents a general analytical technique for calculating the
limits of stability in the system with self excited and par-
ametric vibrations and develops author’s earlier works
(Awrejcewicz, 1986, 1989).
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2. THE ANALYSED SYSTEM AND
EQUATIONS OF MOTION

The diagram of the analysed system is presented in Fig. 1.
A weightless shaft with rectangular cross-section with a
cylinder-like mass concentrated in its center is supported in
the base placed on a belt moving at constant velocity V,. The
friction coefficient between the belt and the base depends on
their relative velocity. The character of this dependence (Fig.
2)causes the creation of self-excited vibrations. The effect is
described in the basic works on nonlinear vibrations. On the
other hand, considering the non-identical cross-section of the
rotor at some values of its rotational speed, parametric
vibrations occur. The vibrations cause the changes of the
normal force holding down the base to the belt in vertical
direction, and hence they cause the changes of the friction
force. It is assumed that the vibration of the rotor does not
cause the tearing of the base off the belt.

The calculation model of the analysed system is presented
in Fig. 3. The equations of motion of the system have the
form:

mic=— EwkeCos o — nuk,sing
myc=Eukesing — puk,cos g+ mg (1)
L=~ Mo+ a( — Epkecos o+ nuksSing,)

where

Xev Ve : Coordinates of the centre of mas of the cylin-
der,

I . Mass moment of inertia of a cylinder with
mass s in relation to the z” axis of the
O"x"y"z"” system moving with translatory
motion in relation to Oxyz

Ew, N : Coordinates of the point of puncture by the
shaft in the coordinate system o'&y

o'én : Coordinate system whose axes are parallel to

the main, central inertia axes of the cross
section of the shaft
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Fig. 2 Dependence of the friction coefficient on the relative
velocity

Fig. 3 Calculation model of the system

ke, ko . Shaft rigidities in the direction of the axes &
and 7

M, . Driving torque reduced by all the resistance
torques

a,90  Parameters characterising the position of the

centre of mass of the disk C in relation to the
point of puncture by the shaft.
For the states near the steady ones the torque M, is very
small. Let

Iz” - ml..g (2)

where j; is the inertia radius, then the third equation of the
Eqg. (1) will assume the form

¢=J'—%(~éwkecos¢o+ TwksSing,) 3
m is

As the eccentricity ¢ and the shaft deflection &, and 7, are
small as compared to the inertia radius, then the folloving can
be assumed :

#=0,¢=w==const,p=wt (4)

The following geometric dependences result from the Fig. 3:

Ew={xu—x)cOSP— yusing
7w=(Xw»—x)sin@+ yucosp

Ye=ywtacos(p+ ¢o) (5)
Xe=xutasin(p+ ¢o)

where x,,v, are the coordinates of the point of puncture by
the shaft W in the system Oxy.

In order to write down the equations of motion of the mass
M it is necessary to determine the dynamic reactions on the
shaft in its points of support. They are determined from the
equations of equilibrium

Xi+ Xo+ Evkecoswt + pukisinwt =0
Yi+ Vi &ukesinwt + pukycoswt =0 (6)

where X}, ¥, and X;, ¥, denote the support reactions on the
left and right end of the shaft, respectively. The rotor reac-
tions on the supports are then as follows

Rx:_Xl_XZ
Ry=—Y1—Y; (7)

The equation of motion of a body with mass M, on the
assumption that M.+ R, >0, has the form

Mi=—lkx—cx+ R+ M+ R)p(w), (8)

W=Vo— X

The dependence of the friction coefficient on the relative
velocity w can be circumscribed with the polynomial

w=¢esgnw —aw + fu’ (9)

Finally, the equations of motion of the analysed system, after
assuming that x = x;,x, = xs,3, = x3,have the form:

¥\ = ‘X1[92+-Qze+.9nz+(.gsz" 3)0082(1)[]
— Hi—xo[ — (8 + 23 + — (22— Q%)cos2wt ]
— x5( Q% — QZ)sin2wt + {g — x( Q2 — QHsin2wt +
—xs — (8 + 028) + (28— 2})cos2wt ]
+x1(8028 — Q8)sin2wt} + [esin(voex;)
~a(ve— %1)+ Blvo— %1)7] (10)
Fr=x]wi+ i+ (0t wl)coslwt]
— xe W3+ b+ (wi— w¥)cos2wt]
+ x3(wi— wi)sin2wt + awsin(wt + ¢,)
$3= — x(wi— wi)sinlwt + xo @i~ w)sin2 wt
+ x5 = (@ + @)+ (wi— &) * cos2wt]

+ aw’cos(wt+ ¢,)+ g
ot K e ke 2=._/f’7_
where : *= M,[Je- ZM,.QV oM’
. C 2__!!'-5_ 2—._k_V
H= Mmoo

3. TRANSFORMATION OF THE
EQUATIONS OF MOTION TO THE
MAIN COORDINATES

Let us introduce the following denotations

QR=%+ Q% B=0Q 0%,
Wi= Wi+ ok wi=wi—- Wk xz:% : p=g s H=pH,

, acoS@e= P . (11)
asingo=pQ ; uG=g
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v 2
; s S ke—ky
Where M= w% - .Q1 a /fe‘}‘ /Cv

After accounting for (11) in the equation system(10), it
will assume the form

is the perturbation parameter.

i = ’X1.QZ_X1.912(3+#COSZ(I)f)—ﬂHJh

+ 20,21+ pcos2wt ) + x3828 usin2 wt

+ el g — x022usin2 wt + 1,22 usin2 wt

+ 23281 — pcos2wt)] « [sgn{v,— %)

- X( Vo~ 351)‘{' P(l"’o— 11)3] .
K= —x10%(1 + pcos2wt) — x203(1 + pcos2 wt)

+ xswiusin2wt + p( Psinwt + Qcoswt ) o® (12)
¥s= —xniwipsin2wt + xew? usin2 wt

— x303(1 — pcos2wt) + p( Peoswt — Qsinwt) w®+ uG

When introducing g=¢e=0 into the equation system(12),
we obtain a homgeneous linear differential equation system

).C.1+X1(.Q2+.le)—X2.le:O
¥at+ @t —x1)=0 (13)
Xt a)bCa:O

When assuming the solution of (13)in the form x,= A.cospt,
;1 =1,2,3, we find the following frequencies

Pra= ] @+ Q1+ 0i = (@F QT 10| (1)

pi= ot

Let us introduce the main coordinates &,, for which at g=
¢=={) disjugation of the linear part of the first two equations
of the system(1?2) will occur. Let us now multiply these
equations by & and &, respectively, and add the sides. The
result will be

,'('151 +)C1(.Q2+.sz)sl *«Yz.leél + fzfz‘FXza)fgz
“Xla)%gziﬂ[_X1.Q;ZCOSZ(1)t51—H1X1$1
+ & x.08cos2wt — Eixs82Esin2 wt
+ &x10icos2wt — Exxawicos2wt
+ Exvswisin2wt + @& Psinwt + Qcos wt)]
+ e&i[g — 28 psin2 wt + 2321 — pcos2wt)
+ 0 QEusin2wt] + [sgnlvo— %) — x(vo— %1)
+ p(vo— %1)°] (15)

By denoting

(*+ 2D~ wi&=667 (16)
— Q&+ wle=6607

we find
(.(224912’—@2)51_(0%52=0 (17)

— Q&+ (0 — 03 E=0

In order for Eq. (17) to be fulfilled for & and &, different from
zero, the following dependence must occur

R0~}

Y S S (18)

Thence

Of=pt and Of=p3

Let & =¢', and &= £&"; be denoted for &, = p,-From the second
equation of the system(16) we find

Er=né’ (19)
where

2
z
CU]'P%

7=

Making use of the dependences(16) and (19), the Eq. (15)
is transformed to the form

Fitapt+ Lon+xepin=plxpincos2wt
— Hi k1 — pinixecos2wt + pinxssin2wt
+ rnw¥(Psinwt + Qcoswt)]+ e[ g — 228 usin2 wt
+ 230281 — pcos2wt) + x:1 Q¢ usin2 wt
« [sgn(vo— £1)—x(vo— %)+ Bvo— %1)°] (20)

Analogously, for @,= P, the following are denoted ; & =¢",
and &,=¢&",, while

EM=1€") (21
where :
o
[ -

Taking (16) and(21) into account in (15), the equation
will assume the form

X1+ x5+ K272+ x2v2p5= pel 1 yophcos2 wt
— H, %1 — x272p5c082 0t + x3 72055102 wi
+ 720’ Psinwt + Qcoswt)] + el g — 222 #sin2 wt

+x30281 — pcos2wt) + x1 Qfsin2wt |

« [sgn(vo— %1) — x(vo— %1)

+ o(vo— %1)°] (22)
Let us denote

n=x1t+rixz
y2=x11 yexz (23)

The reverse dependences can be determined from the Eq. (23)

x1= Biyr— Bey2 (24)
x2=¢(3— y2)

where :

R .y (I
AL s
Let us additionally assume that xs= ys,
Taking(23)and (24)into account in (22), (20)and (12) we
shall obtain the following differential equation system

S+ pivi= ul pin( By — Baye)cos2wt
—H(priy1—B232) = in¥ + (m—y2)cos2wt
+ pEriyssin2wt + Wy Psinwt + Qcoswt )]
+ el g— pQtp(31— y2)sin2wt + 2B
— Boy)sin2wt + Q2 vs(1 — pcos2wt)]
[sgn(ve— B 1+ Bev2)— x(vo— B2 3
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+ B v2) + p(vo— B 1+ B y2)]
Vot Bhye=p[ i y(Bivi — Bey2)cos2wt
—HU{(Bry1— Bey2)+ phrodp(3n — y2)cos2wt
+ piyeyssin2wt + o’y Psinwt + Qcoswt )]
+elg— pQi (31— yo)sin2wt + 18 Bixn
— Bey2)sin2wt + QFys(1— pcos2wt)][sgn{v,
=Byt Beya)— x(vo— Biy1+ faye)
+0(vo— v+ B232)°] (25)
Vat+ piya=p[ — p3(Siy1 — Beye)sin2wt
+ K34y — y2)sin2wt + phyacos2wt
+ w*(Pcoswt — Qsinwt) + G]

After introducing the dimensionless time r= w¢, we obtain

$h+ At = pl A n(ew — e2ye)cos2r
—AH (Y= B2y'2) + Al nyssin2r
+ 7(Psint+ Qcos )]+ el g + 2 ey — 2v2)sin27
+ Qfys(1— pcos2r)] - [—Sgn(va Brwy'1— Bwy’2)
+ = Aiv o~ By 1+ Bey')
+ wp(/h Vo— Bly’x + ,32}"2)3] »

Vot ye=p[ A (€131 — aya)cos2r
— A HyB1y'1— B2y"2) + r2Aiyssin2r
+ 72(Psint+ Qcos )]+ E[g + p2(e131 — €232)8in27
+ Qfys(1— pcos2t)] - [ 7 “sgn(vo— Biwy’ 1 — Bewy'z)

+ A x2( 420”0 — B1y'1+ B2y'2)

+wo(Av”o— By 1+ B2y'2)? (26)
s + Avs=p[ — Ay — 232)sin27

+ Ayscos2r+ Pcost+ Qsint + 3G

where :
. 2
yz*%./lf:f)]—z, =123
Ek"‘Bk_¢,/f 1,2
- X
Lk Dr
G .g_H . , __ Yo . yn _ Vo . 7 He
G_Pg' T VT g VT b’ + iy b2

4. ZONES OF UNSTABILITY OF THE
FIRST ORDER

The procedure of solving the equation system (26) consists
in assuming two perturbation parameters g and ¢ connected
with parameter excitation and friction, respectively.

The sought periodic solutions of y,(r) are presented in the
form of a double power series :

yi(r)= yé"o’+ 8+ Y83+
+ (Wi B+ i+ 23+ )+ (27

where : yi ,k1=0,1,2,--- must fulfill the condition of per-
iodicity. Periodic solutions are only possible for certain
values of the parameters A? presented in the form of analo-
gous series :

A=t paoat+ e+ + e(amo+ pany
+[12£l2,2+“')+ (28)

where : .., £,1=0,1,2--- are the unknown coefficients, which
are determined from the condition of periodicity, avoiding in

the solution terms unrestrictedly growing in time. For the
resonance of the first order »*=1 we shall determine the
parametric unstability zones, for which the frequency of
parameter modulation fulfills, consecutively, the dependences
W= p,w=prand w=ps. In the series (27)and (28) for o™ p,
and w=p, we shall limit our considerations to the first
powers of the small parameters i and e. On the other hand,
for w=p; we shall limit ourselves in the calculations to the
second approximation. In all the three cases we shall assume
that sgn (v, — Biwy’ 1 — Bewy’s) =1

Let
A= 1d.At
A=A (29)
where :
Ve _17__
.

and let us assume that 1, and v, are not integers.
Let us first consider the case @ = p, assuming that

¥68(r)= y§%(z)=0 (30)

The assumption is accounted for by a weak conjugation of
the Eq.(26) for ¢e<1 and u<1. For z=e=0 we shall obtain
a disjugate system of three linear differential equations. For
the resonance coordinate y{, the magnitude of oscillation of
the other two main coordinates should be of the order of the
small parameters z and e.

Let us substitute the series (27) and (28) in the differential
Eq.(26) taking into consideration the dependences (29) and
(30) and the expansion

AZ L gt G0 31

After equating to zero the coefficients at the same powers ¢
and y, we obtain a system of recurrent differential equations

VB =0
YR+ vi = — ano¥l +'%‘“ —8X10b

+2718:y"68+ gwo( 00)3 -38wp(vs)’ By 8
+3gwpveBi(y'§8)° + gwoBi(y'84)
Y+ V8= — @ v + e vy
cos2t— Hifiv'§+ 7 Psint + K Qcost ;
Y&+ VAW =g 8./ Pigu. 70"
+ gren X281V + gwpvi(v”,)?
+3gwovd (v"0) /1y 8
+3gwor v” By §4)*
+ gwpBHy'64) (32)
VA4 VR = yadie1v§cos2r
— v By S+ y2Psinr
+ r.2Qcos7 ;v %+ v yi3=0
VR4 13 v8 = — e yiisin2
+ Pcost— Qsinr+14,G

Assuming the solution of the first euqation of the system (32)
in the form

V8= arcost+ bisinr (33)
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we obtain the following from the second equation

Z
VUt v =2 ezl gwo(v's)
+ %gwpv’oﬂ?(a? +b}) +costl— aea
+ g7 B1bi—3gwoe(v’ ) B — gwpﬂl bt
+ %ga)pﬂi‘bx a+sint[ — aob
— g7 Bia+3gwo(v o) fiay
+ "}gcup[)"?blzal +%gwp/3faﬂ

+ v‘;gw/?v’gﬁ’f(b?* at)cos2r
+3gwov’ oBiaibisin2t +cos3r{— }1 gwofi b}
+ %ga)pﬁ?blaﬂ

+sin3z(~ '}i—gcupﬂx as+ 2 gwpBibiar) (34)

From the condition of periodicity we obtain two algebraic
equations

—anpar+(gx18—3gwo(v' o) 8 —vgwpﬂl/lz)bx

—(gx b~ 3gwo(v'o)’ B *T)gwa?Alz)dl —o1051=0 (35)

where
Al=di+ bt

For the non-zero 4, and 5, the following relation must occur

— o gfl(ﬂl - 3gwo( v'o)z[)’-—%gwpb’?/lf
={) (36)
i "‘(gflﬂl - 3ga)10(v’0)2,81_%gwa?Alz—al,o

Thence
ato + (g1 —3gwoe(v o)1 — % gwpBi A =0 (37)

The only real solution of (37) is

ao=10
Az = X 3wo(v'o) (38)
1 i’ woBt

The following function is the solution of (34)
yig= g——gxlv ot gwo(v'o)’+ -—gwpv "oBLA
+ -%-gwpv'ob’l (68— a})cos2t
+ gwov offtaibisin2r + (glggwpb’?b'
+%gcup,é’?b;a?> . COS3T+<§%gwp (39)
Bial— 5)gwpﬁl la\>sin3r

The solution omits the general integral of the homogeneous

equation by associating it to y§4.
When substituting (33)in the fourth and sixth equation of
the equation system(32), after transformations, we obtain

e 2 2 2 2 =
VBT v =055 — V218 X200

-
Dz
+gwos (v o)+ ) S v2n8wov” ofEA?

+cos r[ Vaagi2B1b1— 3gwpovia

(v"0)? Bt + ~gwp/31 Afbl} + sinr[ — Ve gibi
+3gwpevi (v”o) Bias

+j3(gwpﬂ? fal]+%ug,lgwpvé'

BH(bE— at)cos2r +3ve,gwpviBiaiby

sin2r +< - %gcupﬂ?bf +%gwpﬂ13blaf)

cos3r+ ( — %gwp,@? ai +%gwp;8?bfa:)sinr (40)
YR+ U5v3=0 (41)

The following functions are the paraticular solutions of the
above equations :

= 1’% T2 o+ gwove (v7,)?

3 ) T
+21/ LWV o 1A1+D22,1‘1

[Vz,ngZBl‘3gw,0)/22,1(l/"a)251
_3 3 A2 1

4 gwoBi Aflbicos T+ -
[-vngi:Ba +3gwor (v’ ,)*

Bra+ chupb’?Axal]smr+T3:2_‘T)
gwpv” oflaibisin2r + 2 1_
( -%gwpb’?a? +%gwp813b1 a%)cos?)r (42)
uZ,ll—g (*%gwpﬁi’a?+—i—gw0513bfal)sin3r
and
¥io=0 (43)

By means of substituting (39) in the third equation of the
system (32), we shall obtain

Yoty =(— a’o,xdﬁ‘%ﬁé‘)a: —HBb+7Q)
COST+(_£1’0,1b1__%'7161b1+ﬁ]ﬂ]d]‘f’ 71P) (44)

sint+ %7151010053T+%7’)5]blsingr

We shall avoid terms unrestrictedly growing in time in its
solution if the following equations are fulfilled :

(a1 — % neva+Hpb=nQ

—171,6’101+(afo,1+%7161)b1=)’1P (45)

For the case of P= ¢, after transformations, we obtain the
following from (45)
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0,1 =

2 _ / 2 . 2z
+ /Bt Lytet- Bige (Lo s pet by 2t ie,
(46)

The particular solution of (44) is
vl = _%7151(01(:033?"*‘ bisin3r) (47)

Taking (33) into consideration in the fifth and seventh
equation of the system (32) we find the particular solutions

yé?f :*7‘1‘:1‘<‘%-V§‘17’261(11 - UZ.IH—ZBI b+ 72Q>COS T

Vi,
+ vanFhfrar + 72 P)sinz + 2(3—2%%7
alcos3r+7(%blsin3r
¥ =G+~ ) 1_ 1 ( A'%Vg,lflbl + P)cosr
V:f,ll—- i ( é viierar + Q)Smr+~2r~—§—‘—v€~_‘—~)- (49)
bicos3r+ 2( 162 —9) asindr

We have thus determined the particular terms of the series
(27) and (28), limiting the calcuations to the first approxima-
tion.

Let us now concentrate on the analysis of the case of

w= p,. The solutions will be sought, as has been done

From (28) we obtain

aio

=145 + % (50)

2
Let us deonte that

/1% = V\z,z/lg

A= vk A (51)
where y,= j)—

P_

V3z2=

and 1, and 3, are not integers.
Analogously to (30), we have

y8(2)=yiB=0 (52)

Substituting (27) in (26), with (50), (51) and (52) taken
into account, after equating to zero the coefficients at the
same powers of i and ¢, we obtain

v {8+ vy = "g_"gxl/lzv o gF V12

Bzy’S?ngpv;.z(v o)*+3gwoBeriz
(V' 0)2y' 63+ 3gwon1 2850 o( ¥ §3)
+ gwpBs(y'§4)°

y”B’f + U 2y8 f =71 2523/6 COSZT+ V1,2
H B3'%+ B Psint+ y1Qcost ;

Y vi8=0 "

@+ v &2 )
2

N _ 2) ”
YR+ %= am\’éﬁ'p gx20"0

—gx28:y' B+ gwo(v” o)’ ~ 3gwe(v” o) B2y 84
+3gwor” o35y ) + gwoeB (v ) . (53)
v /521) + _Vr().zl) o ao,xyf)?d‘ - 7’262}"((),10)C0821‘
+ H By’ 8+ o Psine + y.Qcost
VR Vi3 =0

(3 2 —
Y+ ViV = Vi vi8sin2t + Pcost

— Qsinr+ .G

After substituting the following in the fourth equation of the
system (53)

Y= axcosT+ bsinr (54)
and using the trigonometric relations, we obtain

yi= gg"gfw”a + gwp(v” o)

3 " 2 =
+ 5 gwe(v” ) ai+ b+ (— moaz— g7:8:b
~3gwo(v" oY by gwoBb}
fifgwpﬂz beas)cos T+ (— aobs
+ g 2Baa:— 38wo (V" o) aa
+ 'j"gwp/:’%bzzaz j gwpfia3)sine
+ jgwpv'a (b3 a3)cos2t
+3gwpv” ofiarbasinat + L]?

(b5 —3a3)gwpBibacos3t
+-Had=3bDgwpBasingt (55)

From the condition of periodocity of the solution we get

- a,0a2 ’+‘< — gieBe+3gwo(v” o) B2
- gwp[ﬁAz) 2 =)

(g}?zﬁz 3gwolv” o) B~ gwﬁﬁz z) a:
"d’],obz—ﬂ (56)

where Af=a}= b}

For the non-zero @, and b, the main determinant of the
equation system (56) must equal zero. From this condition we
obtain

ao=0

A§=E“2‘_M (57)

%wpﬂzz
The particular solution of the Eq.(55)is

Y= fzf —8%20" 0+ gwo(v” o)’ + —gwpv “ol3 Ab
”‘%‘gwpv"oﬁf(bf— aj) « cos2r

+ gwov” oBiabasin2t + == (Baz b%) gwopBib,
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cos3r+ §12(3b§~ a3)gwoBiasindr (58)

Making use of (54)in the first and sixth equation of the
system (53) we obtain their particular integrals

yil= 1% = g0 o~ gwoviv’)?
1

3 ' 9242
f 21/1,2 gwopy O'BZA2+ VIZ.Z"I

‘<*gfxU1,232+3gU)PBZV12.2(U'u)2

L3 3 2) 1

b &woBE Az |bxcosT + yp—

(gm V1,282 — 3gwpfse 11122(11'0)z

+ ; gwpﬂzA2>d2$lnt+%**) Lwoss
v’ o(b3 ~ az)CObZT+( 3 L

) -gwpPv 02 be

sin2r + (bz 3a ;)*@PEA

bacos37+ T( b3)EL pﬂé a»sin3r (59)

and
viB=0 (60)

The substitution of (54)in the fifth equation of the system

(H3) gives
V(()z]) ))r()zl) B ( o, 1(12*L7’z€za2+ H2ﬂ2b2+ YZQ)
cost+ (* . bz+7yz€zb.r H:Braz+ 72P> (61)

. 1 .
sinz+ % 72€202C083T — 77’262[)2511’13 T

The following is obtained from the condition of periodicity
after transformations and after assuming that P=¢

s o2 (e 1 2. PP,
a2, HZBZ_T%ZEZ_W)'Z

+<Er228§_ e o 2 )’262Az

- 27'352[72"1%22(1‘7282— 7262) =) (62)
Thence
) o1 =
2 4
i\[Z?V§+%-7§e§—H§B§i/(AL;7z> + 7252A2 2Hz,6’z Az rie2
(63)

The particular integer of the Eq.(61) is the following

i = M(mcosS 7+ bsin3r) (64)

On the other hand, after substituting (54)in the second and
seventh equation of (53), we shall find the particular solutions

Y =— 1 —%51.271626124' Vu,zﬁlﬂzbz + ‘)’JQ)

CoST + 5 21v1<; arieabr— 112
iF Dlz 1€2
H162a2+71P>5mr+ 2 Via—9

Y2
axc0837 21/122 9)bzsm3r (65)

< % V§.2€2bz+P)COSZ'

1 .
+m< > Vi262a2— Q)smt

Z(L;j&’Zz—szCOSB T

‘mazsiniir (66)

Finally, let us consider the case of o= p,. Periodic solutions
are possible for particular value of the parameter A,

~ a0 o,1 2 Q2,0
3=1+ ¢ 5 +,u—2 +e—2

+ O+ e e (67)

Let us denote that

/112 = )/12,3/132

A= 1isA (68)
where:

V1,3 = “l;_;

V2,3~ %j‘

and v;; and 1,3 on assumption are not integers. Similarly
to the previous considerations, assuming that

yoid(z)= y63(r) = (69)

we obtain the following recurrent differential equation
system from the equation system (26)

B vt =g+ QFyi)[ L2
s 0 0+ won, 2(1/0)3}
Y+ i =7 m sy§¥sin2z + y(Psinz + Qcosr)

V8 Vsl = — viaanovid+ (g + Q263)
[%— Viaianov o+ — viai{ — By’
+ Bey' B+ Bey' B+ woris
(G vavor iyth) |
+ Q8% [jl'_ Visx1v o+ wovis( 0'0)3]
V83 vhsyid = — visao vl + v 371(61}’3?

- ayé?f)cosZ r+ visHi(Biysd

- ﬁzy,ﬂ + i s a0, v63 + v§¥)sin2
Y+ vyl = — Vs @01 vi8+ anoyd)
+ 1/1,371(513)1.3 ezyl?(?) cos2t
— s Fi(B1y' 18— By’ B) + visri( 0383+ ¥iB)sin2z

g+ Q[ vhaianis




PARAMETRIC AND SELF EXCITED VIBRATIONS INDUCED BY FRICTION IN A SYSTEM WITH - 163

—n aXl( — Byt + /32y(2))+ weYis
’ 0'01

+ Bzy'ﬁ? + .Qf(y&?{ + yé?&cosZ 7)

(-1%2—-— ufaixv’ﬁa)pv?a(v’a)s) ; (70)

Y sl = (g + Q)| 5

— V33 %20 o+ 0oyl U”o)s] ;

v+ viayil =13 372y633sin2 7+ 7{ Psinr + Qcost) ;
V' + V2 v = — vhasanovi3+ (g + QFviR)

[%20" V33 220" ot ot+ — Uiz a(— By}
+ ey’ 2&) + wpvda( U”D)Z

(% sl

Qi3 [#‘ Vs 20" o+ wpria U”a){l

Y B+ Vv = — Vs Vil + Vs e
(e1v]— e2v88)cos2t + v o Biy'1H
— Boy )+ VA7 o 638 + vi)sin2 ¢
v B+ syt = — via(aayiB
+ 0¥+ viarevild + &%)
cos27— Ve, st(;&y l& ,Bzy 23)
+ 133y arov§3+ ¥iR)sin2r

+(g+ Q8§ - [‘;l

~ Vi3 X200 0 V23 X2
(— By &+ By )+ wor3a(v”0)
( Vo300 0’20,1 i Bzy'%):l
+ QU8+ — yi8cos2r)
[é — Va3 X2 o+ wovaa( v"o)g}
V' ¥§8=0
"Q + i 38 = 0)1333
”6?{ + y&sf = — o, 1)’033 + }’53& _
cos2t+ Pcost— Qsint+ G
YR+ V3= oy138 — @063
Y8+ y§9 = — 0,1 v — .83
— ey yiisin2 7+ e y§3sin2r
+ an1y§8cos27 + ¥
cos2t+ an G
y”$31+ y%’f” -, 1533 @ oy(()3f
— a3 —evi3—ePlesin2z
+ o1 v§3cos2t + vilcos2t + ao, G
Y+ v = — ;1868 — a0yt
— a1y — e1yilsin27 + e233
sin27+ ai0¥88cos27 + yfdcos2z
+ oG

After substituting

y§3 = ascost+ bssint (71)
in the twelfth equation of the system (70) we get

¥ 8+ yB= — ao(ascos r+ bssinz) (72)

For the non-zero a; and b; the following results from the
codition of periodicity

a,0=0 (73)

Thence

y3=0 (74)

Making use of (71) in the first and sixth equation of the
system (70), we shall obtain their particular solutions

(ascost+ bssint)
1

Via
l/ia's
l . Vs Zive+ wovks(vo)? ] (75)
2
= [-izr:+ *El-'l—»(aacos T+ bssin r)]
Mg 76)
pg Uz%)fzb a+‘(1)pV23(U o) (7

After substituting (71) in the thirteenth equation of the
system (70), we have

” 1
Yoty =G+ (- Qo123+ :;a.-;+ P)cost

+(— a1bs— — @Q)sinr + (a3c053r+ bssin3r)
(77)
The condition of periodicity gives
W Ly P
abi = 2 + as
(1«5,21) = *Tﬁ'*”]% (78)

The particular solution of this equation is the following :

v =G m-(aacosSr + bssin3z) (79)

When substituting (71) in the second and seventh equation
of the system (70), we obtain their particular integrals :

vl = J‘ 1(--1{‘ by Q)cosr

+—-L3 “~<~1{~ a3+P>smH —L'

I\ 2 2(v:—9)
(assin37— bscos3r) (80)
2
vl = "%%(ﬂba + Q)cos r
viz—1
Z (_zz_x_ ) . V%,aZz
+ 1/23 1 2 ast PJsing + 2(1/22'3—-9)
(@ssin3z — bscos3r) (81)

After substituting (71) and (73) in the fourteenth equation
of the system (70), we obtain the following from the condi-
tion of the existance of periodic solutions

0= (82)

Analogously, taking (71), (79), (80), (81) into account in the
fifteenth equation of the system (70), we shall obtain equa-
tions which, after transformations, will assume the from

) newiaf vis—1 1 )
ab 4 \ + g
1

2
2
Y2E2V33 | ] 1 )
R (1/22,3*1 TS

ﬁl‘_ m__,_l_, P( &171
* 2 W37 as\ 2(vis—1)
o E22
2(u§,3~1)> (83)
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2
g = - 71541U1.3( ~ lAl + 1
s V12,3*9>

2
y2€2V33 1 1 >
* 4 ( vis—1 - Via—1
(2) 717‘@( & €272 >
TR T p\20A— 1) | 204 1)

(84)

The following algebraic equation system will be obtained
from the condition of periodicity of the solutions of the
equation system (70) after substituting (71), (74), (75),
(76) and (79) in its sixteenth equation:

R G e Ll
“aabs— 2 1261911)a3+ 2(65 Z'Q'l)aai() (85)
where :
- 1;;1 Viax iV o+ woris(v'o)
Cy - y],;; ViaZat" o+ woria(v” o)

From the condition of a non-zero solution of the equation

system (85) in relation to g; and bs, we obtain
.Qf( E202 & )}
(1, Z) — wel | < - -
aii [ 2 l/zz,zsfl IJ] ;”] (86)

The coefficients of the sought series (67) are determined by
the expressions (73), (78), (83), (84) and (86).

5. CALCULATION EXAMPLES

The analytically obtained diagrams of parametric un-
stability zones are presented below in order to illustrate the
influence of particular parameters of the system on their
magnitude and position. The physical parameters of the
system are given in the form in which they occur in the
differential Eq.(12).

Figures 4, 5 present the influence of unbalance 4P, damp-
ing (12H,), and the shape of friction characteristic(e/8) on
the magnitude of the parametric unstability zones for p, and
p2, for the following data : Q2=900s72, 02=480s? wi=
4800s72, g=uG=9,81ms % ,=0,4ms !, €=0,2. On the
basis of (14), p=73,32s"' p,=28,35s"}, and p;=69,28s~% have
been obtained. The adequate coefficients assume the form
770,833, 7=0,12, A£1=0,126, Bo= —0,674 £,=1,176, &,=
0,376. The other quantities chavacterising the system have
been marked in the figures(while a/8=a/0).

The parametric unstability zones presented in Figs. 4(for p,)
and 5(for p,) expand with the increase of unbalance uP,
while, depending on the value of the quotient ¢/ 3, this tenden-
cy can have different intensity. In the case of @/8=0,5m’?
the doubling of unbalance has caused the expansion of the
unstability to double for zones for p, as well as for p,, For
a/ 8= 1m?% *the increase a tripling of unbalance brings about
a comparatively small expansion of the unstability zones for
1, while for p, the expan sion is still almost doubled. In the
case of large unbalance of the rotor, the changes of the
quotient @/ do not influence the maguitude of the parametric
unstability zones. The influence of damping on the magnitude

H
ub 14-10"m
p=0

wH=20s7!

p=0
A UH<=1OS-'

K/B=Q5ms2

0 01 02 03 M
a)
3 H, =0
2 ﬂHO, 105" wP=21-107m

o/p=065m?s?

wP=710"m
=0

w0 &/p=Im’s
\

a8
0 oF] 02 a3 A

¢l
Fig. 4 Unstability zones for p,

of the unstability zones corresponding to the frequencies p,
and p, is also very different. Small damping (xH,=0,05s7")
causes considerable shift of the zone for p, in the direction of
the growing value of modulation depth x(x>0,15). In the
case of double increase of damping the zone will not occur for
©<0,3.

The magnitude and position of the unstability zones for p,
are not so sensitive to the changes of the damping coefficient.
In the case of uH,=10s"'the proper zone of frequency p,
ex1sts for>0,034. After a doubled increase of damping, when
uHy =20s7", the lower border of the occurence of the zone is
shifled to the value of £=0,07.

The parametric unstability zones for p; are presented in
Fig. 6. The magnitude of the zones depends on the initial
conditions of the system’s motion. The diagrams have been
prepared on the assumption that g;= h;=0,01m where as= v,
(0), bs=y1(0). The calculations, in the case of the resonan-
ce coordinate y;, have been performed with an exactitude up
to the second approximation, thence the inclination of the
unstability zones in the direction of the growing values of the
parameter A3. For the first approximation, the zones remain
symmetrical in relation to the straight line A3=1. As in the
cases considered aboves the increase of unbalance consider-
ably expands the unstability zone. The changes of the value
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Fig. 6 Unstability zones for ps(a/8=0, 5m?s2 a/B=0, 65m 2,
a/B=1m’"?)

of the quotient @/8 and damping have a negligible influence
on the magnitude of the zone. Fig. 7 presents the parametric
unstability zones for various values of the parameters Q2 Q¢
and «?. For the zones denoted by 1 we get 2%=14400s7?,

2=1920s7%,  w?=19200s"%; for the zones denoted by 2 we
have 2%=3600s7% Q2=480s"% w}=4800s72, and for the zones
denoted by 3 : 2°=900s72, Q&=120s"2% @?=1200s"* In all
the cases the magnitudes of the other parameters are as

follows: pH,=10s"", €=0.2, ¢/F=0,5m? % v=0,4ms™",

Fig. 7

Fig. 8
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zones for: a/p.; b/ p.
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p#P=0,0015m.

As results from the Fig. 7(a),(b) the growth of the squares
of frequencies Q% QZ w?(resulting from the increase of rigidity
of the elastic elements in the system, or from the decrease of
the values of masses) causes that the unstability zones for p,
and p. expand. For example, the increase of the par-
ameters 22, Q% and @} by four times brings about an
approximately doubled expansion of the zones. The un-
stability zone for p; is not influenced by the frequency
changes in the system(Fig. 7(c)).

Figure 8(a),(b) presents the influence of the velocity
changes of the belt », on the magnitude of the unstability
zones for p, and p,. Calculations have been performed for the
data denoted by 1, except for the velocity v, whose value has
been changed. In each case the velocity increase of the belt
causes the expansion of the unstability zones. For 1< 0,3ms
~! these changes ae less evident. The influence of the velocity
changes u, on the parametric unstability zone for ps is
practically negligible.

6. CONCLUDING REMARKS

The paper presents the analysis of a discrete mechanical
system with three degrees of freedom, where self excited
vibrations caused by friction, as well as parametric and
forced vibrations occur. The system of ordinary differential
equations governing the motion of the analysed system is
nonlinear of the six order. The periodicity of the coefficients
in the linear section of the equation of motion results from
non-identical moments of inertia of the shaft cross section of
the rotor constituting part of the analysed system. The non-
linearity is introduced into the equations of motion by friction
between the belt and the rigid mass element where the rotor
is placed. Moreover, it is increased by the normal reaction
changes between the belt and the rotor base resulting from
the rotor vibrations. External excitation in the form of a
periodic function of time is also introduced into the system;
the excitation is the effect of the unbalance of the rotor.

The analysis performed makes it possible to present the
following conclusions :

(1) The method of seeking a solution as the power series of
two periurbation parameters x and e used in the considera-
tions makes it possible to investigate the single resonances of
any order for the systems with weak nonlinearity and weakly
modulated (z<1),

When performing calculations with an exactitude up to the
second approximation, it turns out that the limits of un-
stability zones incline in the direction of the growing values
of the parameter A3(Fig. 6). For the first approximation, the
limits remain symmetrical in relation to the straight line A=
1.

(2) The parametic unstability zones for p: and p. expand with
the increase of the rotor unbalance. Depending on the value of
the quotient a/p, this tendency has different intensity. In the
case of @/f=0,5 m%2 a double increase of inbalance has
brought about a considerable expansion of the unstability
zones, for p, as well as for p,. For @/ =1 m?s~2 the unbalance
which causes a rather small expansion of the unstability
zones for p;, while for p, the expansion is still almost double.
In the case of lack of the rotor unbalance the changes of the
quotient @/f do not influence the magnitude of the par-

ametric unstability zones. The influence of damping on the
magnitude of the unstability zones corresponding to p, and p,
is also very different. Minimum damping (z H,=0,05 s
causes considerable shift of the zone for p, in the direction of
the growing values of modulation depth (¢ #,=0,15 s7).
The magnitude and position of the unstability zones for p, are
not so sensitive to the damping coefficient changes. The
regularities indicated here are the more clear, the greater is
the dif-freence between the values of frequency p, and p, (ie.
for py>»p2). The increase of unbalance also produces a
considerable expansion of the unstability zone for ps .
however the changes of the parameter and of damping have
no essential influence on the magnitude of the zone.

The growth of the frequency squares Q% 0QF and «?
causes the expansion of the unmstability zones for p, and p..
The parametric unstability zone for the frequency ps is not
sensitive to the frequency changes in the system.

In the case of the belt velocity increase v, the unstability
zones for p, and p, are expanded. This property is noticea-
ble within the range of great velocities(,>0,3ms™!). The
influence of the velocity changes », on the parametric un-
stability zone for p, is practically negligible.

(3) For the frequencies p: and p:, the position of unstability
zone limits does not depend in the first approximation on the
initial conditions of the system’s motion. The magnitude of
the unstability zone limits for p; depends on them.
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